Leaf-wise Intersections and Rabinowitz Floer Homology

نویسنده

  • PETER ALBERS
چکیده

In this article we explain how critical points of a perturbed Rabinowitz action functional give rise to leaf-wise intersection points in hypersurfaces of restricted contact type. This is used to derive existence results for hypersurfaces in general exact symplectic manifolds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimates and computations in Rabinowitz-Floer homology

The Rabinowitz-Floer homology of a Liouville domain W is the Floer homology of the Rabinowitz free period Hamiltonian action functional associated to a Hamiltonian whose zero energy level is the boundary of W . This invariant has been introduced by K. Cieliebak and U. Frauenfelder and has already found several applications in symplectic topology and in Hamiltonian dynamics. Together with A. Oan...

متن کامل

Non-displaceable Contact Embeddings and Infinitely Many Leaf-wise Intersections

We construct using Lefschetz fibrations a large family of contact manifolds with the following properties: Any bounding contact embedding into an exact symplectic manifold satisfying a mild topological assumption is non-displaceable and generically has infinitely many leaf-wise intersection points. Moreover, any Stein filling has infinite dimensional symplectic homology.

متن کامل

Infinitely Many Leaf-wise Intersection Points on Cotangent Bundles

In the article [AF08] we showed that for a special class of perturbations of the Rabinowitz action functional critical points give rise to leaf-wise intersection points. In this article we prove existence of infinitely many leaf-wise intersections points for generic Hamiltonian functions on simply connected cotangent bundles. Along the way we prove that the perturbed Rabinowitz action functiona...

متن کامل

Rabinowitz Floer Homology and Symplectic Homology

The first two authors have recently defined RabinowitzFloer homology groups RFH∗(M,W ) associated to an exact embedding of a contact manifold (M, ξ) into a symplectic manifold (W,ω). These depend only on the bounded component V of W \ M . We construct a long exact sequence in which symplectic cohomology of V maps to symplectic homology of V , which in turn maps to Rabinowitz-Floer homology RFH∗...

متن کامل

Floer Homology for Negative Line Bundles and Reeb Chords in Pre-quantization Spaces

In this article we prove existence of Reeb orbits for Bohr-Sommerfeld Legendrians in certain pre-quantization spaces. We give a quantitative estimate from below. These estimates are obtained by studying Floer homology for fibre-wise quadratic Hamiltonian functions on negative line bundles.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008